Design of high density SiP

for complex computing system in micro SD format

Chris BARRATT
Insight SiP Sophia Antipolis FRANCE
Introduction

Design Process
- Functional Specification
- Architecture
- Component Choice
- Size versus Component Choice
- Detailed Schematic
- Breadboard
- Substrate Technology
- Layout
- Electromagnetic Simulation
- Assembly
- Test and Debug

Micro SD Linux Computer

"From Sketch to Product"
The Challenge

How to fit a microprocessor and some memory

Inside a Smart Phone

Sorry How to fit a Linux Computer

Inside a Smart Phone
Must Fit inside a Smart Phone
Must use micro SD slot
Size 11 x 15 x 1 mm
Interface to Phone via SD interface
Sufficient RAM to run Linux
Sufficient Storage to hold Linux image and programs
Operates from SD power supply
Time to Market

Functional Specification

- RAM 512MB
- Flash 8 GB
- MPU
- Access via SD port
- Runs off 3V from SD

 ![Diagram of components: MPU, 4GB Flash, 512MB LPDDR2, I/F SDIO]
Architecture Choices

- Meet Functional specifications
- Choose off the shelf components (Time to Market)
- Consider solutions which have Linux implementations

Architecture Diagram

- **SDIO to Host**
 - **SDIO Client Interface**
 - **Processor**
 - ARM 32 bit or equivalent
 - **Flash**
 - **Driver Error Correction**
 - 8 bit
 - **Flash Memory**
 - 8 GBytes
 - **RAM**
 - 512 MBytes
 - **32bit bus**
 - **SD IF**
 - 2.7V in
 - 3.3V out
 - 1.8V out
 - 1.2V out
Component Choice

Criteria

- Wafers or WLCSP must be available
 - NDA process essential
 - Negotiate with Chip Vendors on a project by project basis
 - Need to obtain wafer data early to make decisions
- Die sizes must be compatible with Micro SD footprint
- Must meet architecture requirements
- Ideally need EVK with working software stacks for a “breadboard”
- Thickness of WLCSP and SMTs must be compatible with Micro SD (< 0.5 mm)

Component Choice

MPU
- Atmel

SD Client
- Lattice Semiconductor

Memories
- Micron

Flash Controller
- Hyperstone

Power Supply
- Texas Instruments
- Torrex Semiconductor LTD
Evaluate Assembly Options
For each Option estimate size
Choose best compromise
Solution adopted
- 4 die Wire Bond Memory stack
- LPDDR2 + 2 NAND Flash
- Flash Controller on LPDDR2
- 2 die WB stack MPU On FPGA
- 4 WLCSP power supply components
- 40 SMT Chips (01005, 0201,..)

<table>
<thead>
<tr>
<th>Option #</th>
<th>Technology</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Laminate + Overmold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Side by Side 0.3mm substrate (6L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.3mm substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.2mm substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.2mm substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.2mm substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.2mm substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Die Memory Stack WLCSP Power Supply Stack 0.2mm substrate</td>
</tr>
<tr>
<td>0</td>
<td>Laminate + Overmold</td>
<td>Laminate + Overmold</td>
</tr>
<tr>
<td>1</td>
<td>Laminate + Overmold</td>
<td>Laminate + Overmold</td>
</tr>
<tr>
<td>2</td>
<td>Laminate + Overmold</td>
<td>Laminate + Overmold</td>
</tr>
<tr>
<td>3</td>
<td>Laminate + Overmold</td>
<td>Laminate + Overmold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option #</th>
<th>X Dim(mm)</th>
<th>Y Dim(mm)</th>
<th>Z dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>22</td>
<td>0.9/1.1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td>0.9/1.1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td>0.8/1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15</td>
<td>0.8/1</td>
</tr>
</tbody>
</table>

Area Summary Table for each option
Create a detailed schematic
2 versions are required
✓ Breadboard with packaged components
✓ SiP design with bare die components
Optimization of Power supply and decoupling is crucial to fit inside small footprint
✓ Reduce number of passives from 80 to 40
✓ Power supply components need to be very small
Same schematic as SiP
Uses Packaged components
Based on MPU EVK
Allows first level Hardware Debug
Allows Firmware Development to be essentially in parallel with SiP Hardware
Can be used in SiP debug as reference
Requirements

- Wire-bond capable
- 100um wire bond finger pitch
- Complex routing ➔ 6 layers
- Fine line 30um / 30 um
- Rear side contacts ➔ Hard gold
- As thin as possible <=0.25mm
- Lowest cost option

Solution

- 6 layer any layer to any layer
- Electrolytic gold
- Complex plating (buss bar ruled out)
 - using 9 process steps
- Pushing limits for etched technology
- Overall substrate very thin (0.22mm)

<table>
<thead>
<tr>
<th>Rule</th>
<th>um</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace width</td>
<td>30</td>
</tr>
<tr>
<td>Space</td>
<td>30</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.22</td>
</tr>
<tr>
<td>Via dia</td>
<td>60</td>
</tr>
<tr>
<td>Catch pad dia</td>
<td>150</td>
</tr>
<tr>
<td>All layer vias</td>
<td>OK</td>
</tr>
<tr>
<td>Hard gold (SD)</td>
<td>OK</td>
</tr>
<tr>
<td>Wire bond</td>
<td>OK</td>
</tr>
</tbody>
</table>
Module Layout

Schematic to Layout

Tool-sets

- Cadence Allegro SIP
- Mentor Graphics Xpedition Package Integrator
- Keysight ADS
- Altium PCB
- Other PCB tools

2D Routing

3D View

IMAPS 12th International Conference Device Packaging - Page 11
Die Stacking
- 3 dies in < 0.58 mm height
- Die thickness 60 – 80 μm
- Film on Wire
- Low loop heights
- Same die size stack

Wire-bonding
- 4 layers of wire bonding
- Accurate x y z control to avoid shorts

Small actives
- WLCSP <0.5mm
- DFN < 0.4 mm

Passives
- 01005 mostly
- 0201 > 100nF
- 0402 > 2 μF
- 0603 low profile for DC:DC chokes
Toolset
- Keysight ADS Momentum 2.5D / full 3D FEM
- Ansys HFSS full 3D EM

Substrate Simulation
- Multi-port s parameters (> 100 ports)
- High speed track impedances
- Coupling between power supply and high speed signals
- Effectiveness of decoupling methods (mix EM/Schematic models)

Iterative process
- Avoids major failures at first prototype phase
- Can be used to fine tune second spin (if needed)

2.5D simulation of Layout
Evaluation of Effects in Schematic
- Courtesy of Amkor
- SMT placement and reflow
- Sequential Die attach – Wire bond
- Accurate 3D wire control
- Over-molding
 ✓ Requires DOE to setup process
- Electrical Prototype yield > 95%
Assumes Breadboard is fully functional

Using Test Board and Socket
- Power Up and Validate Power supplies
- Program MPU with boot sequence and Linux Kernel via JTAG
- Program FPGA with code
- Initialize Flash Controller via MPU
- Boot from Flash

At each step issues can arise
- Compare output with breadboard
- Attempt to put breadboard into same failure mode as SiP
- Attempt to change SMTs in SiP (accurate diamond drilling)

Example
- Issues with assembly spins 1 & 2 was linked to an un-calibrated die and component labelling!!!
- Spin 3 using same substrate is fully functional
Micro SD Power Supplies

- 2 Step down power supplies
 - 1.2V, 1.8V
- 1 step up power supply
 - 3.3V from 2.7V
- 1 power supply monitor
 - Detect under voltage
Memory Stacking

- **LPDDR2**
 - ✔ Wirebonds N&S
- **Flash controller**
 - ✔ Wirebonds W
- **Nand Flash**
 - ✔ Wirebonds E
- **Total Thickness < 0.5mm**
- **Total 250 wirebonds**
FPGA
✓ Wire-bonds on 2 rows on 4 sides
✓ Die is smaller than MPU
✓ FPGA is under MPU
✓ 191 Wire-bonds

MPU
✓ Wire-bonds on 2 rows on 4 sides
✓ Die is bigger than FPGA
✓ MPU is on top
✓ 314 Wire-bonds
Linux on a Micro SD
Design Process for Complex SiP has been demonstrated
- Uses State of the Art « Mainstream » technologies
- Avoids the use of expensive tool-sets
- Avoids the use of unproven technologies
- Heterogeneous SiP for medium volume requires a conservative approach
- The Example micro SD SiP is probably smallest Linux computer today
Thank you