

Smart Modules

General Information

Contents

- **4** Company Profile
- **BLE Generalities**
- UWB Generalities
- LoRa Generalities
- Module Pros & Cons

Company Profile

Company Profile

Experts in RF System-in-Package (SiP) and Antenna-in-Package (AiP) in response to ultra miniature wireless solution demand

- ✓ Founded by actual CEO and CTO
- Core team of PhD and MSc from National Semiconductor
- ✓ Electromagnetic simulation, antenna design and µW & RF circuit theory skills
- ✓ Unique set of design techniques & industrialization expertise
- √ Fab-less company

Locations

- ✓ Europe HQ & Technical team in Sophia-Antipolis
- ✓ North America Subsidiary in Denver ●
- ✓ Asia Sales office in Tokyo

 ■
- ✓ Global network of distributors ●

Our Expertise

- SiP approach consists of integrating several different components into a single miniaturized module
 - ✓ From different semiconductor and passive technologies
 - ✓ Unique ability to embed functions within the package
 - ✓ RF know-how
 - ✓ Irrespective of the technology
 - Organic substrates (BT, FR4...)
 - Multi-layer ceramic substrates (LTCC, HTCC, Thick film...)
 - Thin film Integrated Passive Devices (IPD) on silicon or glass
 - Extremely rapid and low cost development cycles

- Addition of ultra-miniature antennas to the RF SiP create a so called "Antenna in Package" product (AiP)
 - ✓ Fundamental part of long term Insight SiP's research program
 - Combining electromagnetic simulations and circuit level optimization
 - ✓ Based on a user extendable library of physical objects
 - R&D work has already been implemented in products for Bluetooth Low Energy and Wireless High Definition Interface products

Our Mission

Insight SiP is the leading provider of Low Power Networking and Ranging modules for advanced IoT solutions

- Our portfolio includes a diverse set of solutions to meet different loT use cases
- ♣ Our modules provide class leading miniaturization
- They are designed with superb radio performance

Low Power Networking

Web: www.insightsip.com

Low Power Networking

Insight SiP developments focusses on providing a full range of products for loT communication and networking

- ♣ Body Area Networks BLE
- ♣ Home Networks BLE, BLE Long Range, BLE Mesh
- **♣** Building Networks BLE Mesh, BLE Long Range, LoRa Private
- **↓** Outdoor Area Networks LoRa Private & Public
- ♣ Global Coverage LoRa, LTE-M, NB-IoT

Positioning

Positioning

Another strategic focus for Insight SiP is to deploy a full range of modules and solutions for location applications

- ♣ Security Bubble UWB
- Cheap and Cheerful Location BLE
- ↓ Location in Building UWB, LoRa 2.4
- Outdoor Area Networks LoRa, LoRa 2.4
- ♣ Global Coverage LoRa, LTE-M, NB-IoT, Cell Tower Based Location

Our Product Lines

Design Service Business Unit

- ✓ Turnkey solutions for creative packaging solutions
- ✓ Any Wireless connectivity to fit any device space
- ✓ Multiple Technologies : BT, FR4, LTCC, HTCC, Thick Film, PCB, IPD,...
- ✓ Multiple Assembly Methods: SMT, Wirebond, Flipchip, Embedded Dies...
- ✓ Optimization Size / Cost / Time to Market
- ✓ Technical Successes in 3G, ANT, BLE, Bluetooth®, GSM/W-CDMA, GPS, ISM, LTE, NFC, RFID, UMTS, UWB, WHDI™, WiFi, WLan, Zigbee ® ...
- ✓ Benefits to our customers: Smaller, Faster, Lower Cost

Standard Modules Business Unit

- ✓ Dedicated to wireless electronic industry
- ✓ Bluetooth Low Energy, ANT+, UWB, LoRa, LTE-M, NB-IoT
- Secured Connectivity
- ✓ Low Energy Sensors
- ✓ Beacons
- ✓ Benefits to our customers: Ready to use modules

Our Production

Manufacturing with multiple established partners

- ✓ Amkor
- ✓ ASE
- ✓ AT&S
- ✓ Barry Ind
- √ Kyocera
- ✓ Tong Hsing

Quality standards in production

- ✓ ISO9000 standards and several other equivalent certifications
- ✓ OHSAS18001 Health and Safety management
- ✓ ISO13485 Medical requirements
- ✓ AS9100 Aerospace requirements
- ✓ QS9000 Automotive requirements

BLE Generalities

BLE Generalities

Bluetooth SIG

- ✓ The Bluetooth Special Interest Group was formed in 1998.
- ✓ This is now a community of over 30000 members

Bluetooth Classic

- √ V2.0 Bluetooth Classic released in 2004
- ✓ V3.0 Bluetooth High Speed adopted in 2009 Dedicated to audio application

♣ Bluetooth Low Energy

- ✓ V4.0 First Bluetooth Low Energy concept adopted in 2010
- ✓ V4.1 Multirole capabilities Master & Slave on the same chip
- Enable IPv6 for Bluetooth √ V42 Improve speed, security and privacy
- Adopted end 2016 ✓ BT 5 2X speed, 4X range, 8X throughput

Mailto: contact@insightsip.com

Web: www.insightsip.com

BLE Generalities

♣ Bluetooth BR/EDR

- = Basic Rate / Enhanced Data Rate
- ✓ establishes a relatively short-range
- continuous wireless connection
- makes it ideal for use cases such as streaming audio

♣ Bluetooth LE = Low Energy

- allows for short bursts of long-range radio connection
- √ doesn't require continuous connection
- √ depends on long battery life
- makes it ideal for Internet of Things (IoT) applications

Dual-Mode

- ✓ available to support single devices such as smartphones or tablets
- ✓ need to connect to BR/EDR devices (such as audio headsets)
- ✓ Also need to connect to LE devices (such as wearables or retail beacons)

BLE Consumption

♣ Bluetooth LE is designed for Low Power Applications

- ✓ Where aim is long battery life
- ✓ Months / years off coin cell
- ✓ Occasional data exchange

♣ Principle of Bluetooth LE solution

- ✓ BLE chip saves power by being in "sleep mode" most of the time
- Power consumption is strongly related to data rate
- ✓ Bluetooth low energy is designed to enable connectivity of power-sensitive devices operating on primary cells for long periods of time ranging from months to potentially several years
- ✓ One cannot look at peak RX or TX current to assess overall power consumption since the time in low power "sleep" mode dominates overall power consumption

Mailto: contact@insightsip.com

Web: www.insightsip.com

BLE Specifications

Frequency range

- ✓ In the globally unlicensed ISM 2.4 GHz band : 2400–2483.5 MHz
- ✓ Bluetooth uses a radio technology called frequency-hopping spread spectrum (FHSS).
- ✓ It usually performs 1600 hops per second
- ✓ The transmitted data are divided into packets and each packet is transmitted on one of the 79 channels (or 40 channels for Bluetooth Low Energy)

Modulation

- Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme available, said to be operating in basic rate (BR) mode where an instantaneous data rate of 1 Mbit/s was possible
- ✓ Since the introduction of Bluetooth 2.0, DQPSK and 8DPSK modulation may also be used between compatible devices, describe as enhanced Data Rate (EDR), each giving 2 and 3 Mbit/s respectively

Data rate

- ✓ Enhanced rate with V3.0
- Reduced for V4.0 to save energy

Version	Data rate	
1.2	1 Mbits/s	
2.0 + EDR	3 Mbits/s	
3.0 + HS	24 Mbits/s	
4.0	1 Mbits/s	
5.0	2 Mbits/s	
2.0 + EDR 3.0 + HS 4.0	3 Mbits/s 24 Mbits/s 1 Mbits/s	

Mailto: contact@insightsip.com

Web: www.insightsip.com

BLE Architecture

↓ Core Architecture: Host

- Generic Access Profile (GAP) works in conjunction with GATT to define procedures and roles related to the discovery of Bluetooth devices
- Generic Attribute Profile (GATT) groups services and defines procedures and formats of services including discovering, reading, writing, notifying
- ✓ Attribute Protocol (ATT) defines the client/server protocol for data exchange once a connection is established
- Security Manager defines the protocol and behavior that manages pairing integrity, authentication and encryption
- ✓ Logical Link Control and Adaptation Protocol (L2CAP) transmits packets to the HCI

↓ Core Architecture: Controller

- Link Layer defines packet structure/channels, discovery/connection and sends/receives data
- ✓ Direct Test Mode allows testers to instruct the PHY layer
- ✓ The Physical Layer (PHY) controls 2.4Ghz radio

Mailto: contact@insightsip.com

Web: www.insightsip.com

BLE Architecture

The Bluetooth stack is commonly integrating the Host

Application Profiles & Services

- ✓ A device must interpret certain profiles, which are definitions of possible applications and specify general behaviors that devices use to communicate with other devices
- ✓ There are a wide range of Bluetooth profiles that describe many different types of applications or use cases for devices

← Central role (Client) & Peripheral role (Server)

✓ Bluetooth is a packet-based protocol with a client-server structure. One client may communicate with several servers, all devices share the client's clock.

BLE Mesh

- ♣ BLE Mesh is the latest extension of Bluetooth technology
 - ✓ It extends the capabilities and potential uses of Bluetooth in many application.
 - ✓ Particularly suited to smart building and home automation applications
- ♣ BLE Mesh is an independent development to the enhancements introduced by the progression from Bluetooth 4.2 to Bluetooth 5
 - ✓ It uses the same radio and physical transport as existing BLE.
 - ✓ It adds a networking layer that allows multiple Bluetooth devices to work together.
 - ✓ Messages from one device to another can be sent via one or more intermediate nodes.
 - ✓ In other words the network or "mesh" allows two devices to communicate that are too far apart to make a direct point to point Bluetooth connection
 - ✓ In practical terms, a direct point to point Bluetooth connection is limited to around 50m (direct line of sight), or 200m for Bluetooth 5 long range.
- **★** Ability to extend the effective communication distance
- ♣ Allows devices to be put into groups and message to be sent to one device or a group of device

Mailto: contact@insightsip.com

Web: www.insightsip.com

Relay nodes

- Receive and forward messages to other nodes
- Can also be connected to a device (light, thermostat ...)
- Act themselves on a message or generate one
- A relay node receiving a message will look at it, decode and act it (e.g. switch the light on or off), or broadcast the message onward
- Relay nodes are not "lowenergy nodes"

BLEMesh

Friend nodes

- ✓ Friend nodes enable to connect a low energy device to a mesh network
- ✓ The low energy device is linked to a relay node.
- ✓ The friend device can operate in Low Energy mode, and the associate relay node will. store a message, and send it on when the friend node is awake
- ✓ In the other direction, the friend node sends data when it wants, and the associated relay node is ready and waiting
- Friend nodes cannot act to relay messages in the mesh, they are "end point"

Proxy Nodes

- Smartphone or tablet don't need to be updated to run mesh
- As of today no phones run Bluetooth Mesh
- ✓ Proxy node acts as a bridge between a standard BT4+ dual mode and the mesh
- ✓ Proxy node runs both the Mesh and the standard BLE stacks, and can thus receive a message from a phone, and send it on to the mesh

Mailto: contact@insightsip.com

Web: www.insightsip.com

BLE Pros & Cons

Major advantages of BLE

- ✓ Presence of BLE connectivity in nearly every phone and laptop released today
- Only need new hardware at one end
- ✓ Software for phone/laptop easily distributable via app stores
- ✓ Bluetooth protocol widely understood and used, mature

- ✓ Zigbee, ANT, Various proprietary sub-giga protocols
- ✓ BLE is "adapted" for low energy use-case
- Other protocols are technically better designed for certain use cases
- ✓ Other protocols may have lower power consumption for certain use case
- Some are established in certain market sectors
- ♣ For the vast majority of applications where connectivity to a phone or laptop is involved, the "built in" advantage of BLE is overwhelming

BLE Main Applications

♣ BLE typically used for

- ✓ Connected sensors for medical devices, healthcare, sport, fitness, industrial devices ...
- ✓ IoT applications: connected objects like bracelet, watches ...
- ✓ Wearable technology
- ✓ Phone/laptop accessories
- ✓ Home automation
- ✓ Beacons
- ✓ Localize indoors to medium accuracy
- ✓ Wireless charging
- ✓ Led lighting
- ✓ Toys

UWB Generalities

Mailto: contact@insightsip.com

Web: www.insightsip.com

UWB Generalities

Ultra Wide Band in the age

- ✓ UWB is more than 100 Years old technology.
- ✓ In the 2000's, WiMedia was intended for short-range multimedia file transfers and was promoted for personal computers, consumer electronics, mobile devices ...

Mailto: contact@insightsip.com

Web: www.insightsip.com

UWB Impulse Radio (IR-UWB)

- ✓ Finally, UWB spectrum was opened for commercial use in 2005 by the FCC for pulse-based transmission in the 3.1 to 10.6 GHz frequency range targeting sensor data collection, precision locating and tracking applications
- ✓ UWB conforms with IEEE 802.15.4 technical standard which defines the operation of low-rate wireless personal area networks (LR-WPANs). It specifies the physical layer and media access control for LR-WPANs which focuses on low-cost, low-speed ubiquitous communication between devices

IR-UWB Specifications

♣ Frequency range

- ✓ Insight SiP module uses UWB channel 5 center frequency 6489.6 MHz
- ✓ UWB channel bandwidth 499.2 MHz

♣ 802.15.4-2011 Standard

↓ Coded pulse train

- ✓ Binary Position Modn
- ✓ Binary Phase Shift Key
- ✓ Symbol = 2 bits 1 BPM 1 BPSK

↓ UWB consumes very little power

- ✓ Low regulatory limit for transmission strength
- ✓ Very short pulse train in the range of nano-seconds

↓ Built-in scalability

Communication link can be adjusted in terms of data bandwidth, sensitivity, recurrence, etc.

IR-UWB for Ranging

↓ UWB measures the travel time of the signal from the transmitter to the receiver in order to calculate a precise distance

↓ UWB deals with very short pulses of RF energy spread over a large bandwidth: this approach offers huge advantages compared to narrow band technologies

Unsensitivity to Noise & Interference of other narrow band systems

RF pulse straight edges give precise determination of arrival time

- Unsensitivity to Multi-Path Reflection Interference
 - Short pulses avoid combination with reflected signals

IR-UWB for Ranging

4 2-Way Ranging

Simple measurement of time of flight

↓ Time Difference of Arrival (TDOA)

Location determined by a multi-lateration algorithm

UWB Pros & Cons

♣ For applications where precise positioning is necessary, UWB offer the best performances over other technologies

WiFi and BT

- ✓ Using RSSI method
- Sensitive to Multipath, to Interference, to relative position antenna
- ✓ Precision in the 10 meters range

Narrow Band

- ✓ Using Time of Flight method
- Sensitive to Multipath and Interference
- ✓ Precision in the meters range

IR-UWB

- ✓ Using Time of Flight method
- ✓ Unsensitive to Multipath and Interference
- ✓ Precision in 1/10 of meters range

UWB Main Applications

Consumer

- ✓ Building Control
- ✓ Retail
- ✓ Home Robots
- Access Control

Automotive

- ✓ Smart Car Entry
- ✓ Secure Bubble
- ✓ Automated Valet

Industrial

- ✓ Building Control
- ✓ Healthcare
- ✓ Agriculture
- ✓ Safety Security
- √ Factory Automation
- ✓ Robotics
- Mining

LoRa Generalities

Lora Basics

- ↓ LoRa is a Low-Power Wide Area network protocol, aimed at low data rate – low power applications (like BLE)
- Uses Adaptive Data Rate (ADR) to maximize combination of range/data/rate power
- ♣ Thus one cannot quote a max range or data rate like BLE, but the following table (Source: Orange) indicates capability (probably under ideal conditions)

Spreading Bitrate factor (at 125 kHz)	Range (indicative value, depending on propagation conditions)	Time on Air (ms) For 10 Bytes app payload
SF7 5470 bps	2 km	56 ms
SF8 3125 bps	4 km	100 ms
SF9 1760 bps	6 km	200 ms
SF10 980 bps	8 km	370 ms
SF11 440 bps	11 km	740 ms
SF12 290 bps	14 km	1400 ms
(with coding rate 4	/5 ; bandwidth 125Khz ; Packet Er	rror Rate (PER): 1%)

LoRa Frequencies

- The following table defines the frequencies used by LoRa in key regions
- LoRa uses unlicensed spectrum

LÔI	Ra	
۳		

Region	Supported	Band [MHz]	Duty cycle	Output power
EU	Y	868	<1 %	+14 dBm
EU	Y	433	<1 %	+10 dBm
US	Y	915	<2 % (BW<250 kHz) or <4 % (BW>=250 kHz) Transmission slot < 0.4 s	+20 dBm
CN	N	779	<0.1 %	+10 dBm

LoRa Definitions I

- ↓ LoRa Technology refers to the special radio modulation scheme (ADR etc) used to achieve the high data rate/low power performance
- ↓ It is owned by Semtech (originally developed by Cycleo in France)
- Only Semtech have radio chips available today, although Semtech is licensing the technology to others
- Semtech chip is simple radio modem
 - ✓ Driven by 4-wire SPI
 - Controlled and monitored by Configuration and Status Registers
 - ✓ 4 IRQ lines
 - ✓ FIFO buffers for data in/out Rx/Tx

- Different variants (for different radio bands etc), but core functionality is the same
- Requires external MCU

LoRa Definitions II

- ↓ LoRaWAN refers to a standard Network protocol, allowing different LoRa devices to communicate with each other in a standard way
- A private point to point network could used LoRa technology, but not LoRaWAN (although it could)
- ♣ A public network would normally use LoRaWAN
- ↓ LoRaWAN is defined and maintained by the LoRa Alliance (this roughly corresponds to the BT SIG)

- **↓ LoRa Alliance** members include chip companies, Network operators, system integrators
- **↓** LoRaWAN evolving currently on 1.0.2, 1.1 coming (roaming protocol)

LoRa Definitions III

- ↓ Unlike BLE Gateways have a different hardware for the radio – thus a device module cannot be used as a Gateway
- → Devices can be three classes A, B, C
 - ✓ Class A Transmits only when ready Downlink follows uplink, but there is no way for the Gateway to initiate a downlink
 - ✓ Class B Has a regularly scheduled downlink window
 This standard is not fully defined by the LoRa Alliance
 - ✓ Class C Always listening
- Class A is the mode used in most battery driven nodes, as it is the lowest power mode
- ♣ Class C is generally used when power is not an issue

Module Pros & Cons

Module Disadvantages

- Bill of Material cost is inevitably higher for a Module than for a Discrete design
- ♣ And that is pretty much it!

Module Advantages

Ready to Go

- ✓ No need for RF knowledge
- ✓ Design effort for RF design is very often underestimated
- ✓ Minimum electronic skills for digital connection
- ✓ Module is pre-certified, avoiding lengthy and expensive certification process

Fast Time to Market

✓ Time to market reduced by 3 to 6 months

Smaller

- Small and integrated solution
- ✓ Single component replaces many, supply chain simpler

Improved performance

- ✓ Optimized antenna performance
- ✓ BLE function concentrated in one single component

Application development is focused on its added value

COMPANY CONFIDENTIAL

Module Trade Off

♣ Need to check overall project cost and duration between both solution

	Standard Off-shelf Modules	Custom Designs	
RF design	Core competency of module vendor Heavy 1-time investment	Expertise required for layout, signal routing, layer stack-up, interference, shielding	
Size	Optimized size	May require larger area on target PCB	
Procurement	1 component	Multiple components	
Complexity	Like any component to place RF design and RF yield		
Assembly	1 component ready to mount	Complex Bill Of Material (BOM)	
Test	Module fully tested (behaviour, Electromagnetic, placement,)	Need full test on end-product	
Yield	100% yield ready modules Yield losses in production Failure analysis & rework costs		
Quality	Modules are fully tested and provided as known good	RF expertise and test flows to cover connectivity systems	
Certification	Pre-certified / already certified		

Module Trade Off

♣ Example of global cost approach for a 100 k pieces project

✓ Of course, this calculation depends strongly on customer know how for each specific application

	Standard Off-shelf Modules	ISP13030IC 1347	Custom Designs	
RF design			Personnel cost (6 months) Material, Equip., Indust.	50 k€ 50 k€
Certification			FCC, CE, IC, Telec	40 k€
Procurement	1 Module @ 4 € ea.	400 k€	BOM @ 2 € ea.	200 k€
Assembly			Part of total assy	several 10 k€
Test			Part of total test	several 10 k€
Yield			Maybe 95-98% & rework	several 10 k€
Total		400 k€		> 400 k€

Module Trade Off

Volume	Standard Off-shelf Modules	Project Points
Up to 200 K pcs / year	Std Module is ideal	 At this level, BOM savings will simply not cover development costs
200 – 500 K pcs / year	Std Module is the best solution	 Looking only at BOM costs, custom looks good However, it is important to double check real development cost that might be under-estimated
500 K + pcs / year	Std Module is a good solution	 Here, custom solution starts to look attractive Even so, when real dev. costs, certification etc is accounted for, it isn't clear Need to look at other factors – time to market, risk etc Can suggest customer starts with module, and can switch later if custom cost saving got proven

Insight SiP Inside

Insight SiP offers a wide range of Wireless Modules with strong and concentrated performances for IoT applications

- ◆ Offers Networking Connectivity & Positioning Modules
 - ✓ Multi BLE platforms with additional ANT+ and NFC connectivity
 - ✓ UWB BLE combo modules
 - ✓ Soon LoRa BLE combo modules.
- Offers complete development kit
- Working demos including hardware, and software for iOS
 - ✓ Sensor demo
 - ✓ Beacon demo
 - Easy starting point for customers
- Very high quality hardware support from true RF experts
 - Possible RF and range simulation of customer design

Mailto: contact@insightsip.com

Web: www.insightsip.com

SiP Module Concept

- Designed by RF specialist and leading chipset manufacturer
- Nordic Inside
 - ✓ WLCSP wireless SoC and multiple analog and digital functions
- 2 Both crystals included
 - ✓ Radio & Synchronization
 - Reduced power consumption
- B Power supply decoupling
 - ✓ For both DC-DC enable or disable operating mode
- 4 Antenna matching circuit
- Integrated Antenna
 - ✓ Proprietary integrated antenna
 - ✓ Offering best reproducibility and best in class performance
 - ✓ Relatively insensitive to environment
- 6 Integrated shielding avoiding external metallic covers
 - Reduces height and size

Mailto: contact@insightsip.com

Web: www.insightsip.com

Certified Portfolio

Modules all certified for easy final application certification

Evolutive Offering

Insight SiP intends to propose a complete set of solutions to our customers

- **♣** Smart Modules
- Ready to Use Module to be integrated in application circuit
- ✓ Off shelf

- **♣** Smart Devices
- Ready to Use Radio and Hardware circuit with integrated sensor
- ✓ Custom or Off shelf

- Design to Production
- Radio and Hardware included in a Custom Design SiP
- ✓ Specific form factor

Module Dev Boards

↓ Complete Development kit

- ✓ 1 interface board with nRF51822 dongle and J-Link Cortex emulator
- √ 1 test board
- √ 1 application demo for test purpose
- √ 5 sample module units
- ✓ Cables
- ✓ Dev Kits are compatible in between P/N

Evaluation Board

- √ 1 interface board with nRF51822 dongle and J-Link Cortex emulator
- √ 1 test board

Test Board

- ✓ Specific test board of required P/N compatible with any Kit
- ✓ Note: ISP091201 test board is only suitable with Nordic Dev Kit

Module Manufacturing

- Modules are manufactured in 2 plants, in Taiwan and Philippines
 - ✓ Contingency plan in place
- ♣ All modules fully tested before delivery
 - ✓ IOs, Radio and Flash/RAM writing
 - ✓ Possibility to offer Pre-programming service

√ Samples are provided in thermoformed trays or cut tape

ISP Modules have been tested MSL-5

It is recommended to bake the product before assembly

Delivered in sealed pack
Tape & Reel ARE NOT suitable for further baking

ANY QUESTION? FEEL FREE TO CONTACT US contact@insightsip.com

THANK YOU!

Mailto: contact@insightsip.com

Web: www.insightsip.com